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Let X be a Hilbert space, and consider the point Xo minimizing, for a given I
in X, the distance II x - 1[1 as x ranges over a polyhedral set C defined by a finite
number of real-valued equalities and inequalities. We wish to see how X o varies
when / and C vary. It is easy to see that Xo is HOlder continuous with exponent
t in its dependence on/and C; this estimate is in general sharp. We show, however,
that in certain cases Xo is actually Lipschitz continuous in its dependence on the
parameters which are used to define the set C.

1. INTRODUCTION

A problem of some practical and theoretical interest is that of constrained
approximation: given a point I and a subset Co of some normed space X,
find an X o in Co minimizing II x -III as x ranges over Co. When Co is a
linear subspace or a flat, this problem is fairly well understood; we wish to
consider the more general situation in which Co is just convex. For example,
if x is a continuous function, we wish to allow constraints such as x ~ 0
or (Xi ~ x(ti ) ~ f3i . In practical situations the parameters appearing in the
constraints-such as (Xi, f3i, and ti above-may well contain experimental
or measurement errors; it is meaningful to ask in what way these errors
influence the solution Xo . Thus, in this paper we wish to investigate how Xo ,

the metric projection of I onto the set Co, depends on the set Co itself.
Apparently this question of stability or conditioning has not been considered
in much detail although some related results are known [1, 2, 4, 6-8, 11, 12];
generally one more often studies the case in which Co is fixed but I varies.
In our studies we can of course also allow f to vary since, by the simple
device of replacing Co by Co - f, we can always assume f to be zero and we
can replace perturbations in I with perturbations in Co' With this in mind,
we herealter assume for convenience that I is zero.
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First we consider what sort of results one might hope to obtain. The best
one might expect in any generality is that a "nice" perturbation of order E

in a "nice" set Co would lead to a perturbation of order E in the solution X o
The following extremely simple example in R2 seems to indicate however
that no such result is possible.

Let Co = {x = (Xl' X 2) E R2 I Xl ~ 0, X 2 ~ I}; clearly the closest
to (0,0) in Co is (0, 1), where we use the 12-norm II X II = (X1

2 + x 2
2)1/2. For

any E~ 0, let C. = {x I Xl ~ 0, X2 ~ 1, X 2 + Xl v€" ~ 1 + E}. Since C. C Co,
clearly any X in C. is at a zero distance from Co ; conversely, any X = (Xl' X 2)

in Co is at most E distant from (Xl' max{x2 , 1 + E - Xl v€"}) in C•. Thus
in almost any sense C. is a perturbation of Co of order E; since the closest
point in C. to (0, 0) is (V€", I), we see that the closest point has moved by v€"
although the set Co moved only by E. Since this was a finite dimensional
problem with an inner product norm and since Co and CE were simple
polygons, it seems clear that we cannot hope to prove that the closest point
is Lipschitz continuous in its dependence on the distance between C. and Co ;
at most we might hope for Holder continuity with exponent t. We return
to this in Section 2.

It is important to note in this example however that, although C. is only E

away from Co, in some sense this is a fluke since the inequalities defining C.
are actually perturbations of order v€" from those inequalities defining Co .
Thus one might now hope to show that perturbations of order E in the
inequalities and equalities defining Co would lead to perturbations of order E

in the closest point to the origin. In [3] we extended in certain directions
the work of [5, 10, 11] concerning perturbations of linear inequalities and
equalities in finite dimensions, while in [4] we applied these results to study
the perturbation in the solution of finite dimensional definite quadratic
programs when the data are perturbed; here we apply and extend these
latter results to the problem addressed in this paper, assuming X to be a real
Hilbert space.

2. HOLDER CONTINUITY IN THE DEPENDENCE ON DISTANCE

First we pause to dispose of the simpler question of the dependence of
the solution on the distance between the constraint sets. Throughout the
remainder of this paper we assume that X is a real Hilbert space with inner
product (-, '). We also assume throughout that C. for E ~ 0 is a closed
convex subset of X; actually C. need not depend explicitly on E, a parameter
used only to measure the "distance" between Co and perturbations thereof.
We define, for E ~ 0,

XE minimizes II X 112 = <X, X) as X ranges over C. . (2.1)
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THEOREM 2.2. In addition to the general conditions above, suppose that
for each r > 0 there exists a constant Cr such that to each x in Co with II x II ~ r
there corresponds an x.' in C. with II x.' - x II ~ CrE and to each y. in C. with
II y.11 ~ r there corresponds a y' in Co with II y' - Y. [I ~ CrE. Then there
exists a constant C such that the x. defined by Eq. (2.1) satisfy II x. - Xo II ~ C VE
as E tends to zero.

Proof For x. defined by Eq. (~.1), let x.' in C. satisfy II x.' - Xo II ~ CrQ €

for € > 0, where ro = II X o II. Smce II x.11 ~ II x.' II = II Xo + x.' - Xo \I ~
II Xo II + crQE = r, we know that there exist y.' in Co satisfying [I x. - y.' II ;::; CrE.

Now, by the usual characterization of the point of minimum norm in a
convex set, we have <x., x.' - x.) ~ 0 and <xo , y.' - xo) ~ 0. Adding
these two inequalities and rearranging terms yields

°~ <x. - Xo , Xo - x.) + <x. - Xo , x. - Y.') + <x., x.' - X o + y.' - x.).

Therefore II x. - Xo 112 ~ II x. - Xo II CrE + r(2cr E); solving this for II x. - Xo II
then yields II x. - Xo II ~ HCrE + [(Cr E)2 + 8rcr E]1(2} from which the con­
clusion of the theorem follows. Q.E.D.

This theorem shows that x. is Holder continuous at Xo with exponent at
least t in its dependence on the "distance" between Co and C. ; the example
of Section 1 shows this estimate to be sharp. We remark that similar estimates
can be obtained for more general uniformly convex norms.

3. LIPSCHITZ CONTINUITY IN THE DEFINING PARAMETERS

As suggested by our example in Section 1, we hope to show that X o moves
by order E when the inequalities defining Co are perturbed by order E. Any
convex set C can be defined via C = {x I <l(t), x) ~ a(t) for all tin T}, where
T is some index set, a(t) is a scalar, and l(t) is an element of X for each t
in T. We wish to consider sets C. = {x I <lit), x) ~ ait) for all t in T}
where Ill.(t) - l(t)1I ~ E and Ialt) - a(t)1 ~ E for all t in T; we wish to
identify conditions under which one can prove that II Xo - x. II ~ CE for
some constant c and x. defined by Eq. (2.1). Thus far in our work we have
only succeeded in treating the case in which T is a finite set; we proceed
to the study of this case.

We assume now that Co has the form

(3.1)

where Go and Do are linear operators, Go: X --'>- Rm', Do: X --'>- Rr', go is in
Rm' and do is in Rr'. We use the symbols ~, <, < and their analogs ~, >, >
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in the sense of [9J. That is, b ~ 0 if and only if each component of b is
nonpositive, b < 0 if and only if each component of b is negative, and
b < 0 if and only if b ~ 0 but b =I=- O. For convenience, we no longer keep
track of the precise dimension of the ranges of various linear operators with
finite dimensional ranges; the dimensions are always such that all indicated
compositions, order relations, et cetera are well defined. We also use the
same symbol II . II to denote a variety of norms. For convenience we often
will use the symbol c as a generic constant, seldom the same in different
occurrences. We denote by Gbi

) (and similarly for other operators with
finite dimensional range) the ith component linear functional in Go, that
Gox is the vector whose ith component is <Gbi >, x). Let Xo be the subspace
of X spanned by the set {Gbi >, Dbj

) for all i,j}. It is a simple consequence [7, 9]
of duality theory (or of orthogonally decomposing x into components with
respect to Xo) that the solution X o to Eq. (2.1), that is minimizing II x 11 2

over Co , must in fact lie in Xo . Thus we get the same solution by considering
the strictly finite dimensional problem of minimizing II x li2 over

(3.2)

In the setting of Eq. (3.2) we may loosely think of Go and Do as (being
given by) rectangular matrices.

We now consider perturbations of Co , namely

Ce = {x I Gex ~ gE' D.x = dE}' with II Go - GE II :;;; E, II g. - go II ~ E,

II DE - Do II ~ E, II de - do II :;;; E,

(3.3)

and with Ge and DE mapping into the same range spaces as Go and Do,
respectively. Once again the point Xe of minimum norm in CE must lie in XE ,

the span of {G~i), D~j) for all i, j}, so that we may restrict ourselves to mini­
mizing II x 112 over

C/ = {x I GEx :;;; g€ , D.x = d. , x in X.}. (3.4)

By means of Eqs. (3.2) and (3.4) we have reduced our problem to one
of considering the effect of perturbations in the equalities and inequalities
defining finite dimensional polyhedra; this is precisely the problem discussed
at length in [3]. The arguments there show that we can partition Go and go
into

(3.5)

such that

\ Box = bo for all x in Co', and either Ao is vacuous or
Ithere is x in Co' with Aox ~ ao - h for some h > O. (3.6)
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It also is shown in [3] that in order for Co' and C.' to be close together as E

tends to zero one must require that the rank of the matrix representations of
N€ = (~€) on X€ (where G€ is partitioned as (~€) in parallel with that for
Go) must be constant for E ~ O. It is straightforwa:d to see that this hypothesis
on the ranks of the matrix representations of (~€) on X€ is equivalent to the
same hypothesis on the dimension of the ranges of (~€) on X since this

€

dimension is equal to the aforementioned rank. Therefore, from Theorem 4.2
of [3] and from Hoffman's Theorem [5, 3] we immediately deduce the
following:

PROPOSITION 3.7. In addition to the general hypotheses in Eqs. (3.1)-(3.6),
suppose that

the dimension of the range of N€ ~ (~€ )on X equals the
€

dimension of the range No = (~o ) on X for all E ~ O.
o

(3.8)

Then there exist positive constants c and EO depending on Co' such that:

(1) to each xo' in Co' satisfying E(l + II xo' II) ~ EO there corresponds an
x.' in C.' satisfying II xo' - x.' II ~ CE(l + II xo' ID; and

(2) to each x.' in C.' there corresponds an xo' in Co' satisfying
II xo' - x.' II ~ cE(1 + II x.' ID·

Combining the above proposition with Theorem 2.2 and recalling that
our minimization problems over Co and C€ are equivalent to those over Co'
and C.', we find the following simple result.

COROLLARY 3.9. In addition to the general hypotheses in Eqs. (2.1) and
(3.1)-(3.6), assume that Eq. (3.8) holds. Then there exist positive constants Eo

and c such that, for E ~ EO , one has II X o - x€ II ~ c VE.

We remind the reader at this point that the above corollary is not what
we set out to prove; rather we had hoped to use the results of [4] on the
stability of quadratic programs to prove the stronger result II x€ - Xo II ;:;; CE.

In fact we have now reached precisely the point following Proposition 4.6
of [4] at which the result II x€ - Xo II ;:;; c vE" for quadratic programs was
strengthened to II x€ - X o II ;:;; CE. Were it not for the fact that the resulting
strong result, Theorem 4.24 of [4], was stated for the case in which X is
finite dimensional, we could apply that theorem here without further ado.
Fortunately, the analysis leading to that theorem can be repeated almost
identically with only minor notational differences such as replacing a matrix
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transpose like Al by the adjoint operator Ao*; we do not waste the space
here to reproduce those arguments for our more general setting. By thus
extending Theorem 4.24 of [4], we immediately obtain our desired result.

THEOREM 3.10. Let our general hypotheses of Eqs. (2.1) and (3.1)-(3.6)
hold, so that XE minimizes II x 11 2 over C€ = {x 1 GEx ~ gE' DEx = dE}' where
GE and DE have finite dimensional ranges and where G€ is partitioned into
G< = (1<) in parallel with the partition of Go into Go = (io) according to

E 0

Eq. 3.6. Suppose, moreover, that Eq. (3.8) holds so that the dimension of the
range of (~E) over X is constant for E ~ O. Then there exist positive constants c
and EO such that Ii XE- X o II ~ CE whenever E ;:;;; EO and E = max{11 Go - GE

II go - gE Ii, II Do - DE II, II do - dE II}.
This result thus shows that, for polyhedral sets in infinite dimensional

Hilbert spaces, metric projections are Lipschitz continuous in their depen­
dence on the equalities and inequalities defining their range sets, under
fairly minimal hypotheses. Thus perturbations or inaccuracies in the data
defining such approximation problems lead to perturbations or inaccuracies
in the solution that are of the same order of magnitude.
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